金属检测(金属检测国标)

    

今天给各位分享金属检测的金属检测金属检测知识,其中也会对金属检测国标进行解释,国标如果能碰巧解决你现在面临的金属检测金属检测问题,别忘了关注本站,国标现在开始吧!金属检测金属检测

重金属的检测有哪些方法

1、质谱法

质谱法是金属检测金属检测将待测物质的分子转变成带电粒子,利用稳定的国标磁场使带电粒子按照核质比的大小顺序分离开来,并形成可以检测的金属检测金属检测谱图。在重金属检测中一般使用等离子体质谱法(ICP-MS),国标将电感藕合等离子体与质谱联用,金属检测金属检测利用电感藕合等离子体使样品汽化,国标将待测金属分离出来,金属检测金属检测从而进人质谱进行测定。国标

2、金属检测金属检测电化学分析法

电化学分析法是一种根据物质在溶液中的电化学性质及其变化来确定其组成与浓度的方法。电化学分析法检测重金属主要包括伏安法、极谱法和离子选择性电极法等。电化学分析的测量信号是电导、电位、电流、电量等电信号,所以电化学分析的仪器装置较为简单,易于自动化和连续分析,是一种公认的快速、灵敏、准确的微量和痕量分析方法。

3、基于 QCM技术的检测方法

石英晶体微天平是一种基于压电效应的高灵敏质量传感器,装置简单,使用方便,已广泛应用于生物化学传感检测,金纳米粒子较大的团簇质量为以石英晶体微天平为代表的质量敏感型传感器提供了高灵敏度的物质基础。目前基于石英晶体微天平的纳米金探针检测重金属已有一定的研究,此方法不仅具有灵敏度高、选择性好的特点,而且方法简单、快速、成本低、便于现场分析因而便于普及。已有报道通过在石英晶体微天平表面形成纳米复合物引起质量变化来检测溶液中的痕量重金属离子。其做法是先让金属离子在羧基修饰的 QCM表面进行络合吸附,然后加入羧基修饰的金纳米粒子,使之与 QCM表面吸附的重金属离子结合,在 QCM 表面形成一层三明治结构的纳米复合物, 引起 QCM谐振频率明显下降, 从而实现定量检测。该方法大大提高了 QCM 检测重金属离子的灵敏度,且具有重现性好、传感器易再生等特点。

4、电感耦合等离子体发射光谱法

电感耦合等离子体发射光谱仪 (ICP)在铅的特征谱线处有吸收,在一定浓度范围内, 其吸收值与铅含量成正比,通过标准曲线法确定试样中铅含量。ICP法的检出限可达 0.1~1 μg/g。ICP 分析速度快,可以同时快速分析多种元素,检出限低,标准曲线的线性范围宽,可达 4~6个数量级,样品消耗少。

以上是关于重金属检测的相关信息,由百检化妆品检测平台整理,希望帮助到你,望采纳

重金属的检测有哪些方法?

重金属检测方法及应用\x0d\x0a一、重金属的危害特性\x0d\x0a(一)自然性:\x0d\x0a长期生活在自然环境中的人类,对于自然物质有较强的适应能力。有人分析了人体中60多种常见元素的分布规律,发现其中绝大多数元素在人体血液中的百分含量与它们在地壳中的百分含量极为相似。但是,人类对人工合成的化学物质,其耐受力则要小得多。所以区别污染物的自然或人工属性,有助于估计它们对人类的危害程度。铅、镉、汞、砷等重金属,是由于工业活动的发展,引起在人类周围环境中的富集,通过大气、水、食品等进入人体,在人体某些器官内积累,造成慢性中毒,危害人体健康。\x0d\x0a(二)毒性:\x0d\x0a决定污染物毒性强弱的主要因素是其物质性质、含量和存在形态。例如铬有二价、三价和六价三种形式,其中六价铬的毒性很强,而三价铬是人体新陈代谢的重要元素之一。在天然水体中一般重金属产生毒性的范围大约在1~10mg/L之间,而汞,镉等产生毒性的范围在0.01~0.001mg/L之间。\x0d\x0a(三)时空分布性:\x0d\x0a污染物进入环境后,随着水和空气的流动,被稀释扩散,可能造成点源到面源更大范围的污染,而且在不同空间的位置上,污染物的浓度和强度分布随着时间的变化而不同。\x0d\x0a(四)活性和持久性:\x0d\x0a活性和持久性表明污染物在环境中的稳定程度。活性高的污染物质,在环境中或在处理过程中易发生化学反应,毒性降低,但也可能生成比原来毒性更强的污染物,构成二次污染。如汞可转化成甲基汞,毒性更强。与活性相反,持久性则表示有些污染物质能长期地保持其危害性,如重金属铅、镉等都具有毒性且在自然界难以降解,并可产生生物蓄积,长期威胁人类的健康和生存。\x0d\x0a(五)生物可分解性:\x0d\x0a有些污染物能被生物所吸收、利用并分解,最后生成无害的稳定物质。大多数有机物都有被生物分解的可能性,而大多数重金属都不易被生物分解,因此重金属污染一但发生,治理更难,危害更大。\x0d\x0a(六)生物累积性:\x0d\x0a生物累积性包括两个方面:一是污染物在环境中通过食物链和化学物理作用而累积。二是污染物在人体某些器官组织中由于长期摄入的累积。如镉可在人体的肝、肾等器官组织中蓄积,造成各器官组织的损伤。又如1953年至1961年,发生在日本的水俣病事件,无机汞在海水中转化成甲基汞,被鱼类、贝类摄入累积,经过食物链的生物放大作用,当地居民食用后中毒。\x0d\x0a(七)对生物体作用的加和性:\x0d\x0a多种污染物质同时存在,对生物体相互作用。污染物对生物体的作用加和性有两类:一类是协同作用,混合污染物使其对环境的危害比污染物质的简单相加更为严重;另一类是拮抗作用,污染物共存时使危害互相削弱。\x0d\x0a二、重金属的定量检测技术\x0d\x0a通常认可的重金属分析方法有:紫外可分光光度法(UV)、原子吸收法(AAS)、原子荧光法(AFS)、电感耦合等离子体法(ICP)、X荧光光谱(XRF)、电感耦合等离子质谱法(ICP-MS)。除上述方法外,更引入光谱法来进行检测,精密度更高,更为准确!\x0d\x0a日本和欧盟国家有的采用电感耦合等离子质谱法(ICP-MS)分析,但对国内用户而言,仪器成本高。也有的采用X荧光光谱(XRF)分析,优点是无损检测,可直接分析成品,但检测精度和重复性不如光谱法。最新流行的检测方法--阳极溶出法,检测速度快,数值准确,可用于现场等环境应急检测。\x0d\x0a(一)原子吸收光谱法(AAS)\x0d\x0a原子吸收光谱法是20世纪50年代创立的一种新型仪器分析方法,它与主要用于无机元素定性分析的原子发射光谱法相辅相成,已成为对无机化合物进行元素定量分析的主要手段。\x0d\x0a原子吸收分析过程如下:1、将样品制成溶液(同时做空白);2、制备一系列已知浓度的分析元素的校正溶液(标样);3、依次测出空白及标样的相应值;4、依据上述相应值绘出校正曲线;5、测出未知样品的相应值;6、依据校正曲线及未知样品的相应值得出样品的浓度值。\x0d\x0a现在由于计算机技术、化学计量学的发展和多种新型元器件的出现,使原子吸收光谱仪的精密度、准确度和自动化程度大大提高。用微处理机控制的原子吸收光谱仪,简化了操作程序,节约了分析时间。现在已研制出气相色谱—原子吸收光谱(GC-AAS)的联用仪器,进一步拓展了原子吸收光谱法的应用领域。\x0d\x0a(二)紫外可见分光光度法(UV)\x0d\x0a其检测原理是:重金属与显色剂—通常为有机化合物,可于重金属发生络合反应,生成有色分子团,溶液颜色深浅与浓度成正比。在特定波长下,比色检测。\x0d\x0a分光光度分析有两种,一种是利用物质本身对紫外及可见光的吸收进行测定;另一种是生成有色化合物,即“显色”,然后测定。虽然不少无机离子在紫外和可见光区有吸收,但因一般强度较弱,所以直接用于定量分析的较少。加入显色剂使待测物质转化为在紫外和可见光区有吸收的化合物来进行光度测定,这是目前应用最广泛的测试手段。显色剂分为无机显色剂和有机显色剂,而以有机显色剂使用较多。大多当数有机显色剂本身为有色化合物,与金属离子反应生成的化合物一般是稳定的螯合物。显色反应的选择性和灵敏度都较高。有些有色螯合物易溶于有机溶剂,可进行萃取浸提后比色检测。近年来形成多元配合物的显色体系受到关注。多元配合物的指三个或三个以上组分形成的配合物。利用多元配合物的形成可提高分光光度测定的灵敏度,改善分析特性。显色剂在前处理萃取和检测比色方面的选择和使用是近年来分光光度法的重要研究课题。\x0d\x0a(三)原子荧光法(AFS)\x0d\x0a原子荧光光谱法是通过测量待测元素的原子蒸气在特定频率辐射能激以下所产生的荧光发射强度,以此来测定待测元素含量的方法。\x0d\x0a原子荧光光谱法虽是一种发射光谱法,但它和原子吸收光谱法密切相关,兼有原子发射和原子吸收两种分析方法的优点,又克服了两种方法的不足。原子荧光光谱具有发射谱线简单,灵敏度高于原子吸收光谱法,线性范围较宽干扰少的特点,能够进行多元素同时测定。原子荧光光谱仪可用于分析汞、砷、锑、铋、硒、碲、铅、锡、锗、镉锌等11种元素。现已广泛用环境监测、医药、地质、农业、饮用水等领域。在国标中,食品中砷、汞等元素的测定标准中已将原子荧光光谱法定为第一法。\x0d\x0a气态自由原子吸收特征波长辐射后,原子的外层电子从基态或低能态会跃迁到高能态,同时发射出与原激发波长相同或不同的能量辐射,即原子荧光。原子荧光的发射强度If与原子化器中单位体积中该元素的基态原子数N成正比。当原子化效率和荧光量子效率固定时,原子荧光强度与试样浓度成正比。\x0d\x0a现已研制出可对多元素同时测定的原子荧光光谱仪,它以多个高强度空心阴极灯为光源,以具有很高温度的电感耦合等离子体(ICP)作为原子化器,可使多种元素同时实现原子化。多元素分析系统以ICP原子化器为中心,在周围安装多个检测单元,与空心阴极灯一一成直角对应,产生的荧光用光电倍增管检测。光电转换后的电信号经放大后,由计算机处理就获得各元素分析结果。\x0d\x0a(四)电化学法—阳极溶出伏安法\x0d\x0a电化学法是近年来发展较快的一种方法,它以经典极谱法为依托,在此基础上又衍生出示波极谱、阳极溶出伏安法等方法。电化学法的检测限较低,测试灵敏度较高,值得推广应用。如国标中铅的测定方法中的第五法和铬的测定方法的第二法均为示波极谱法。\x0d\x0a阳极溶出伏安法是将恒电位电解富集与伏安法测定相结合的一种电化学分析方法。这种方法一次可连续测定多种金属离子,而且灵敏度很高,能测定10-7-10-9mol/L的金属离子。此法所用仪器比较简单,操作方便,是一种很好的痕量分析手段。我国已经颁布了适用于化学试剂中金属杂质测定的阳极溶出伏安法国家标准。\x0d\x0a阳极溶出伏安法测定分两个步骤。第一步为“电析”,即在一个恒电位下,将被测离子电解沉积,富集在工作电极上与电极上汞生成汞齐。对给定的金属离子来说,如果搅拌速度恒定,预电解时间固定,则m=Kc,即电积的金属量与被测金属离了的浓度成正比。第二步为“溶出”,即在富集结束后,一般静止30s或60s后,在工作电极上施加一个反向电压,由负向正扫描,将汞齐中金属重新氧化为离子回归溶液中,产生氧化电流,记录电压-电流曲线,即伏安曲线。曲线呈峰形,峰值电流与溶液中被测离了的浓度成正比,可作为定量分析的依据,峰值电位可作为定性分析的依据。\x0d\x0a示波极谱法又称“单扫描极谱分析法”。一种极谱分析新力一法。它是一种快速加入电解电压的极谱法。常在滴汞电极每一汞滴成长后期,在电解池的两极上,迅速加入一锯齿形脉冲电压,在几秒钟内得出一次极谱图,为了快速记录极谱图,通常用示波管的荧光屏作显示工具,因此称为示波极谱法。其优点:快速、灵敏。\x0d\x0a(五)X射线荧光光谱法(XRF)\x0d\x0aX射线荧光光谱法是利用样品对x射线的吸收随样品中的成分及其多少变化而变化来定性或定量测定样品中成分的一种方法。它具有分析迅速、样品前处理简单、可分析元素范围广、谱线简单,光谱干扰少,试样形态多样性及测定时的非破坏性等特点。它不仅用于常量元素的定性和定量分析,而且也可进行微量元素的测定,其检出限多数可达10-6。与分离、富集等手段相结合,可达10-8。测量的元素范围包括周期表中从F-U的所有元素。多道分析仪,在几分钟之内可同时测定20多种元素的含量。\x0d\x0ax射线荧光法不仅可以分析块状样品,还可对多层镀膜的各层镀膜分别进行成分和膜厚的分析。\x0d\x0a当试样受到x射线,高能粒子束,紫外光等照射时,由于高能粒子或光子与试样原子碰撞,将原子内层电子逐出形成空穴,使原子处于激发态,这种激发态离子寿命很短,当外层电子向内层空穴跃迁时,多余的能量即以x射线的形式放出,并在教外层产生新的空穴和产生新的x射线发射,这样便产生一系列的特征x射线。特征x射线是各种元素固有的,它与元素的原子系数有关。所以只要测出了特征x射线的波长λ,就可以求出产生该波长的元素。即可做定性分析。在样品组成均匀,表面光滑平整,元素间无相互激发的条件下,当用x射线(一次x射线)做激发原照射试样,使试样中元素产生特征x射线(荧光x射线)时,若元素和实验条件一样,荧光x射线强度与分析元素含量之间存在线性关系。根据谱线的强度可以进行定量分析\x0d\x0a(六)电感耦合等离子体质谱法(ICP-MS)\x0d\x0aICP-MS的检出限给人极深刻的印象,其溶液的检出限大部份为ppt级,实际的检出限不可能优于你实验室的清洁条件。必须指出,ICP-MS的ppt级检出限是针对溶液中溶解物质很少的单纯溶液而言的,若涉及固体中浓度的检出限,由于ICP-MS的耐盐量较差,ICP-MS检出限的优点会变差多达50倍,一些普通的轻元素(如S、 Ca、Fe 、K、 Se)在ICP-MS中有严重的干扰,也将恶化其检出限。\x0d\x0aICP-MS由作为离子源ICP焰炬,接口装置和作为检测器的质谱仪三部分组成。\x0d\x0aICP-MS所用电离源是感应耦合等离子体(ICP),其主体是一个由三层石英套管组成的炬管,炬管上端绕有负载线圈,三层管从里到外分别通载气,辅助气和冷却气,负载线圈由高频电源耦合供电,产生垂直于线圈平面的磁场。如果通过高频装置使氩气电离,则氩离子和电子在电磁场作用下又会与其它氩原子碰撞产生更多的离子和电子,形成涡流。强大的电流产生高温,瞬间使氩气形成温度可达10000k的等离子焰炬。被分析样品通常以水溶液的气溶胶形式引入氩气流中,然后进入由射频能量激发的处于大气压下的氩等离子体中心区,等离子体的高温使样品去溶剂化,汽化解离和电离。部分等离子体经过不同的压力区进入真空系统,在真空系统内,正离子被拉出并按照其质荷比分离。在负载线圈上面约10mm处,焰炬温度大约为8000K,在这么高的温度下,电离能低于7eV的元素完全电离,电离能低于10.5ev的元素电离度大于20%。由于大部分重要的元素电离能都低于10.5eV,因此都有很高的灵敏度,少数电离能较高的元素,如C,O,Cl,Br等也能检测,只是灵敏度较低。

金属检测标准都包括哪些?

一、金属材料力学性能试验方法:

GB/T 228.1—2010金属材料 拉伸试验 第一部分:室温试验方法

GB/T 228.2—2015金属材料 拉伸试验 第2部分:高温试验方法

GB/T 229—2007金属材料 夏比摆锤冲击试验方法

GB/T 230.1—2009金属材料 洛氏硬度试验 第1部分:试验方法(A、B、C、D、E、F、G、H、K、N、T标尺)

GB/T 231.1—2009金属材料 布氏硬度试验 第1部分:试验方法

GB/T 232—1999金属材料 弯曲试验方法

GB/T 233—2000金属材料 顶锻试验方法

GB/T 235—2013金属材料 薄板和薄带 反复弯曲试验方法

GB/T 238—2013金属材料 线材 反复弯曲试验方法

GB/T 239.1—2012金属材料 线材 第1部分:单向扭转试验方法

GB/T 239.2—2012金属材料 线材 第2部分:双向扭转试验方法

GB/T 241—2007金属管 液压试验方法

GB/T 242—2007金属管 扩口试验方法

GB/T 244—2008金属管 弯曲试验方法

GB/T 245—2008金属管 卷边试验方法

GB/T 246—2007金属管 压扁试验方法

GB/T 1172—1999黑色金属硬度及强度换算值

GB/T 2038—1991金属材料延性断裂韧度JIC试验方法

GB/T 2039—2012金属材料 单轴拉伸蠕变试验方法

GB/T 2107—1980金属高温旋转弯曲疲劳试验方法

GB/T 2358—1994金属材料裂纹尖端张开位移试验方法

GB/T 2975—1998钢及钢产品力学性能试验取样位置及试样制备

GB/T 3075—2008金属材料 疲劳试验 轴向力控制方法

GB/T 3250—2007铝及铝合金铆钉线与铆钉剪切试验方法及铆钉线铆接试验方法

GB/T 3251—2006铝及铝合金管材压缩试验方法

GB/T 3252—1982铝及铝合金铆钉线与铆钉剪切试验方法

GB/T 3771—1983铜合金硬度和强度换算值

GB/T 4156—2007金属材料 薄板和薄带埃里克森杯突试验

GB/T 4158—1984金属艾氏冲击试验方法

GB/T 4160—2004钢的应变时效敏感性试验方法(夏比冲击法)

GB/T 4161—2007金属材料 平面应变断裂韧度KIC试验方法

GB/T 4337—2008金属材料 疲劳试验 旋转弯曲方法

GB/T 4338—2006金属材料高温拉伸试验方法

GB/T 4340.1—2009金属材料 维氏硬度试验 第1部分:试验方法

GB/T 4340.2—2012金属材料 维氏硬度试验 第2部分:硬度计的检验与校准

GB/T 4340.3—2012金属材料 维氏硬度试验 第3部分:标准硬度块的标定

GB/T 4341.1—2014金属材料 肖氏硬度试验 第1部分:试验方法

GB/T 5027—2007金属材料 薄板和薄带塑性应变比(r值)的测定

GB/T 5028—2008金属材料薄板和薄带拉伸应变硬化指数(n值)的测定

GB/T 5482—2007金属材料动态撕裂试验方法

GB/T 6398—2000金属材料疲劳裂纹扩展速率试验方法

GB/T 6400—2007金属材料 线材和铆钉剪切试验方法

GB/T 7314—2005金属材料室温压缩试验方法

GB/T 7732—2008金属材料 表面裂纹拉伸试样断裂韧度试验方法

GB/T 7733—1987金属旋转弯曲腐蚀疲劳试验方法

GB/T 10120—2013金属材料 拉伸应力松弛试验方法

GB/T 10128—2007金属材料 室温扭转试验方法

GB/T 10622—1989金属材料滚动接触疲劳试验方法

YB-T 5345-2006 金属材料滚动接触疲劳试验方法

GB/T 10623—2008金属材料 力学性能试验术语

GB/T 12347—2008钢丝绳弯曲疲劳试验方法

GB/T 12443—2007金属材料 扭应力疲劳试验方法

GB/T 12444—2006金属材料 磨损试验方法 试环-试块滑动磨损试验

GB/T 12444.1—1990金属 磨损试验方法MM型磨损试验

GB/T 12778—2008金属夏比冲击断口测定方法

GB/T 13239—2006金属材料 低温拉伸试验方法

GB/T 13329—2006金属材料 低温拉伸试验方法

GB/T 14452—1993金属弯曲力学性能试验方法

GB/T 15248—2008金属材料轴向等幅低循环疲劳试验方法

GB/T 15824—2008热作模具钢热疲劳试验方法

GB/T 16865—2013 变形铝、镁及其合金加工制品拉伸试验用试样及方法

GB/T 17104—1997金属管 管环拉伸试验方法

GB/T 17394.1—2014金属材料 里氏硬度试验 第1部分 试验方法

GB/T 17394.2—2012金属材料 里氏硬度试验 第2部分:硬度计的检验与校准

GB/T 17394.3—2012金属材料 里氏硬度试验 第3部分:标准硬度块的标定

GB/T 17394.4—2014金属材料 里氏硬度试验 第4部分 硬度值换算表

GB/T 17600.1—1998钢的伸长率换算 第1部分:碳素钢和低合金钢

GB/T 17600.2—1998钢的伸长率换算 第2部分 奥氏体钢

GB/T 26077—2010金属材料 疲劳试验 轴向应变控制方法

GB/T 22315—2008金属材料 弹性模量和泊松比试验方法

二、金属材料化学成分分析:

GB/T 222—2006钢的成品化学成分允许偏差

GB/T 223.X系列 钢铁及合金 X含量的测定

GB/T 4336—2002碳素钢和中低合金钢火花源原子发射光谱分析方法(常规法)

GB/T 4698.X系列 海绵钛、钛及钛合金化学分析方法 X量的测定

GB/T 5121.X系列 铜及铜合金化学分析方法 第X部分:X含量的测定

GB/T 5678—1985铸造合金光谱分析 取样方法

GBT 6987.X系列 铝及铝合金化学分析方法 ……

GB/T 7999—2007铝及铝合金光电直读发射光谱分析方法

GB/T 11170—2008不锈钢 多元素含量的测定 火花放电原子发射光谱法(常规法)

GB/T 11261—2006钢铁 氧含量的测定 脉冲加热惰气熔融-红外线测定方法

GB/T 13748.X系列 镁及镁合金化学分析方法 第X部分 X含量测定 ……

三、金属材料物理冶金试验方法

GB/T 224—2008钢的脱碳层深度测定法

GB/T 225—2006钢淬透性的末端淬火试验方法(Jominy 试验)

GB/T 226—2015钢的低倍组织及缺陷酸蚀检验法

GB/T 227—1991工具钢淬透性 试验方法

GB/T 1954—2008铬镍奥氏体不锈钢焊缝铁素体含量测量方法

GB/T 1979—2001结构钢低倍组织缺陷评级图

GB/T 1814—1979钢材断口检验法

GB/T 2971—1982碳素钢和低合金钢断口检验方法

GB/T 3246.1—2012变形铝及铝合金制品组织检验方法 第1部分 显微组织检验方法

GB/T 3246.2—2012变形铝及铝合金制品组织检验方法 第2部分 低倍组织检验方法

GB/T 3488—1983硬质合金 显微组织的金相测定

GB/T 3489—1983硬质合金孔隙度和非化合碳的金相测定

GB/T 4236—1984钢的硫印检验方法

GB/T 4296—2004变形镁合金显微组织检验方法

GB/T 4297—2004变形镁合金低倍组织检验方法

GB/T 4334—2008金属和合金的腐蚀 不锈钢晶间腐蚀试验方法

GBT 4335—2013低碳钢冷轧薄板铁素体晶粒度测定法

GB/T 4334.6—2015不锈钢5%硫酸腐蚀试验方法

GB/T 4462—1984高速工具钢大块碳化物评级图

GB/T 5058—1985钢的等温转变曲线图的测定方法(磁性法)

GB/T 5168—2008α-β钛合金高低倍组织检验方法

GB/T 5617—2005钢的感应淬火或火焰淬火后有效硬化层深度的测定

GB/T 8359—1987高速钢中碳化物相的定量分析 X射线衍射仪法

GB/T 8362—1987钢中残余奥氏体定量测定 X射线衍射仪法

GB/T 9450—2005钢件渗碳淬火硬化层深度的测定和校核

GB/T 9451—2005钢件薄表面总硬化层深度或有效硬化层深度的测定

GB/T 10561—2005钢中非金属夹杂物含量的测定标准评级图显微检验法

GB/T 10851—1989铸造铝合金针孔

GB/T 10852—1989铸造铝铜合金晶粒度

GB/T 11354—2005钢铁零件渗氮层深度测定和金相组织检验

GB/T 13298—2015金属显微组织检验方法

GB/T 13299—1991钢的显微组织检验方法

GB/T 13302—1991钢中石墨碳显微评定方法

GB/T 13305—2008不锈钢中α-相面积含量金相测定法

GB/T 13320—2007钢质模锻件 金相组织评级图及评定方法

GB/T 13825—2008金属覆盖层 黑色金属材料热镀锌单位面积称量法

GB/T 13912—2002金属覆盖层 钢铁制件热浸镀层技术要求及试验方法

GB/T 14979—1994钢的共晶碳化物不均匀度评定法

GB/T 15711—1995钢材塔形发纹酸浸检验方法

GB/T 30823—2014测定工业淬火油冷却性能的镍合金探头试验方法

GB/T 14999.1—2012高温合金试验方法 第1部分:纵向低倍组织及缺陷酸浸检验

GB/T 14999.2—2012高温合金试验方法 第2部分:横向低倍组织及缺陷酸浸检验

GB/T 14999.3—2012高温合金试验方法 第3部分:棒材纵向断口检验

GB/T 14999.4—2012高温合金试验方法 第4部分:轧制高温合金条带晶粒组织和一次碳化物分布测定

YB/T 4002—2013连铸钢方坯低倍组织缺陷评级图

四、金属材料无损检测方法

GB/T 1786—2008锻制圆饼超声波检验方法

GB/T 2970—2004厚钢板超声波检验方法

GB/T 3310—1999铜合金棒材超声波探伤方法

GB/T 4162—2008锻轧钢棒超声检测方法

GB/T 5097—2005无损检测 渗透检测和磁粉检测 观察条件

GB/T 5126—2001铝及铝合金冷拉薄壁管材涡流探伤方法

GB/T 5193—2007钛及钛合金加工产品超声波探伤方法

GB/T 5248—2008铜及铜合金无缝管涡流探伤方法

GB/T 5616—2014无损检测 应用导则

GB/T 5777—2008无缝钢管超声波探伤检验方法

GB/T 6402—2008钢锻件超声检测方法

GB/T 6519—2013变形铝、镁合金产品超声波检验方法

GB/T 7233.1—2009超声波检验 第1部分:一般用途铸钢件

GB/T 7233.2—2010铸钢件 超声检测 第2部分:高承压铸钢件

GB/T 7734—2004复合钢板超声波检验

GB/T 7735—2004钢管涡流探伤检验方法

GB/T 7736—2008钢的低倍缺陷超声波检验法

GB/T 8361—2001冷拉圆钢表面超声波探伤方法

GB/T 8651—2002金属板材超声波探伤方法

GB/T 8652—1988变形高强度钢超声波检验方法

GB/T 9443—2007铸钢件渗透检测

GB/T 9445—2015无损检测 人员资格鉴定与认证

GB/T 10121—2008钢材塔形发纹磁粉检验方法

GB/T 11259—2015无损检测 超声检测用钢参考试块的制作和控制方法

GB/T 11260—2008圆钢涡流探伤方法

GB/T 11343—2008无损检测 接触式超声斜射检测方法

GB/T 11345—2013焊缝无损检测 超声检测 技术、检测等级和评定

GB/T 11346—1989铝合金铸件X射线照相检验针孔(圆形)分级

GB/T 12604.1—2005无损检测 术语 超声检测

GB/T 12604.2—2005无损检测 术语 射线照相检测

GB/T 12604.3—2005无损检测 术语 渗透检测

GB/T 12604.5—2008无损检测 术语 磁粉检测

GB/T 12604.6—2008无损检测 术语 涡流检测

GB/T 12604.7—2014无损检测 术语 泄漏检测

GB/T 12604.8—1995无损检测 术语 中子检测

GB/T 12604.9—2008无损检测 术语 红外检测

GB/T 12604.10—2011无损检测 术语 磁记忆检测

GB/T 12604.11—2015无损检测 术语 X射线数字成像检测

GB/T 12605—2007无损检测 金属管道熔化焊环向对接接头射线照相检测

GB/T 12966—2008铝合金电导率涡流测试方法

GB/T 12969.1—2007钛及钛合金管材超声波探伤方法

GB/T 12969.2—2007钛及钛合金管材涡流探伤方法

GB/T 14480.1—2015无损检测仪器涡流检测设备第1部分:仪器性能和检验

GB/T 14480.2—2015无损检测仪器涡流检测设备第2部分:探头性能和检验

GB/T 14480.3—2008无损检测涡流检测设备第3部分系统性能和检验

GB/T 15822.1—2005无损检测 磁粉检测 第1部分:总则

GB/T 15822.2—2005无损检测 磁粉检测 第2部分 检测介质

GB/T 15822.3—2005无损检测 磁粉检测 第3部分 设备

GB/T 18694—2002无损检测 超声检验 探头及其声场的表征

GB/T 18851.1—2005无损检测 渗透检测第1部分 总则

GB/T 18851.2—2008无损检测 渗透检测 第2部分:渗透材料的检验

GB/T 18851.3—2008无损检测 渗透检测 第3部分:参考试块

GB/T 18851.4—2005无损检测 渗透检测 第4部分 设备

GB/T 18851.5—2005无损检测 渗透检测 第5部分 验证方法

GB/T 19799.1—2005无损检测 超声检测 1号校准试块

GB/T 19799.2—2005无损检测 超声检测 2号校准试块

GB/T 23911—2009无损检测 渗透检测用试块

五、金属材料腐蚀试验方法

GB/T 1838—2008电镀锡钢板镀锡量试验方法

GB/T 1839—2008钢产品镀锌层质量试验方法

GB/T 10123—2001金属和合金的腐蚀 基本术语和定义

GB/T 13303—1991钢的抗氧化性能测定方法

GBT 15970.X系列 金属和合金的腐蚀 应力腐蚀试验

可以在中服云方案库搜索更多金属检测报告、规范!

食品中重金属的检测方法有哪些?

食品中重金属的检测方法如下:

1、电化学分析法(EA)是发展比较早的一项分析技术,它是根据被测物质在溶液中的电化学性质及其变化为基础,建立物质组成与浓度之间的关系。优点有:仪器装置小、操作方便、易于自动化和连续分析。在化学成分分析中,检测限可以低至10~12g/L,适合多种元素的检测。

2、阳极溶出伏安法(ASV),在一定的电位下,使待测金属离子部分还原成金属并溶入微电极或析出于电极表面,然后向电极施加反向电压,使微电极上的金属氧化而产生氧化电流,根据氧化过程的电流-电压曲线进行分析的伏安法。主要特点是能够区别溶液中的各种痕量金属的不同的化学形态,且可同时测定多种金属,价格低廉,操作简便。

3、单扫描极谱分析法也称为示波极谱法,是根据滴汞电极上电位的线性扫描所得到的电流-电位曲线进行分析。用单扫描极谱分析法可实现对莲藕各部位中Pb,Cd,Zn,Cu,Mn和Cr含量的分析。

4、生物传感器检测重金属法即利用重金属和特定的生物识别物质结合,将变化通过信号转换器转化成易于检测到的光信号或者电信号等。常用的生物传感器有酶生物传感器、DNA传感器、细胞传感器、微生物传感器等。

检测食品中重金属可以使用金属检测机,梅特勒-托利多重力下落式金属检测机为了较大限度地降低食品加工业中因金属污染物而导致的产品召回风险,较新的Profile重力下落式金属检测机配备了eDrive?技术。eDrive?提高了对所有金属类污染物的灵敏度,包括黑色金属、有色金属和难以检测到的一些不锈钢等级,从而能够检测到更小的、形状不规则的金属污染物。简化测试模式可显著降低性能测试的频率,提高生产能力。

金属探测仪可以探测哪些金属

金属检测机可以检测哪些金属?

金属探测器探测金属。只要有金属,它就会报警。主要有三大类:电磁感应式、X射线检测式和微波检测式。它们是用于检测金属的电子仪器,可以应用于许多领域。金属探测器不仅可以探测武器,还可以探测硬币、钥匙和其他金属物体。

在军事上,可以用金属探测仪探测金属地雷;在安防领域,可以检测到携带或隐藏的武器和作案工具;在考古中,可以探测到埋藏有金属物的古墓,发现古墓中的金银财宝、珠宝或其他金属制品;在工程上,可用于探测地下金属埋设物,如管道、管线等。在矿产勘探中,可用于探测和发现天然金颗粒;在工业上,可用于在线监测,如去除棉花、煤炭、食品中的金属杂质。金属探测仪还可以作为对青少年进行国防教育和科普活动的工具,也可以作为有趣的娱乐玩具。尤其是近年来,欧美国家大范围普及个人感兴趣的金属探测器,金属探测活动已经演变成户外运动的一部分。

金属检测的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于金属检测国标、金属检测的信息别忘了在本站进行查找喔。


版权声明:本文为「本用在线影视」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。  
原文链接:http://884842.online-hanse.de/html/198a26699535.html